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19.1 Introduction: Pathologies Caused by Aging
Extracellular Proteins

Stiffness, arthritis, and cataracts have long been associated with aging humans and
other mammals. In recent decades, important biochemical bases of these, and other,
progressive age-associated pathologies have been identified. They are caused, at
least in part, by accumulating chemical modifications to long-lasting structural pro-
teins in the extracellular matrix (ECM) (Kohn 1978; Cerami et al. 1987; Vasan et al.
2001; Verzijl et al. 2003; DeGroot et al. 2004). Over time, chemical and mechan-
ical changes accumulate in long-lasting extracellular structural proteins (LESPs),
profoundly affecting the growth, development, and death of cells, as well as the
mechanical operation of bodily systems. The LESPs stay in place for a very long
time. Molecular modifications can remain unrepaired, and accumulate with age. It
is now apparent that several types of accumulating chemical modifications are espe-
cially damaging to human physiological functioning. Extracellular aging is a major
player in the interrelated processes of human aging (Cerami et al. 1987; Robert
et al. 2008).

Chemical reactions, importantly glycation, lipoxidation, oxidation, nitration,
amino acid isomerization, each change the LESPs in the ECM, as do protein
strand breaks, wound healing, scar (cicatrix) formation, photoaging of the skin, and
the actions of macrophages, infections, and inflammation. Important consequences
include:

• Changed mechanical properties of tissues
• Changed environmental niches for cells, which affect their health and develop-

ment
• Vicious cycles of progressively increasing damage.

Three processes are especially significant causes of pathogenic LESP modifica-
tions: glycation, lipoxidation, and strand breaks (Cerami et al. 1987; Januszewski
et al. 2003; Robert et al. 2008). Glycation, formerly called “nonenzymatic glycosy-
lation”, is the spontaneous covalent bonding of a sugar to a macromolecule, such
as a protein (Eble et al. 1983; Bucala and Cerami 1992). Lipoxidation occurs when
oxidation of lipids produces reactive lipid fragments that covalently bond to proteins
(Miyata et al. 1999). The chemical group attached to the protein is referred to as an
“adduct”. The phrases, “advanced glycation endproducts” (AGEs) and “advanced
lipoxidation endproducts” (ALEs) have been used to describe the wide array of
chemical species that eventually result from glycation and lipoxidation reactions
(Cefalu et al. 1995; Januszewski et al. 2003). Glycation and AGEs have been studied
for many years in connection with diabetic complications and physiological senes-
cence. More recently, the Baynes lab pointed out that lipoxidation pathways also
create some of the same damaging endproducts (Januszewski et al. 2003; Miyata
et al. 1999).

AGEs and ALEs have been established as strong contributors to many pro-
gressive diseases of aging: vascular diseases (such as atherosclerosis, systolic
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19 Repairing Extracellular Aging and Glycation

hypertension, pulmonary hypertension, and poor capillary circulation) (Cerami et al.
1987; Bucala and Cerami 1992; Vaitkevicius et al. 2001;Vlassara and Palace 2003),
erectile dysfunction (Usta et al. 2004, 2006); kidney disease (Vasan et al. 2001;
Vlassara and Palace 2003), stiffness of joints and skin, osteoarthritis (deGroot
et al. 2004; Verzijl et al. 2003), cataracts, retinopathy (Vasan et al. 2001), periph-
eral neuropathy (Bucala and Cerami 1992), Alzheimer’s Dementia (Ulrich and
Cerami 2001; Perry and Smith 2001), impaired wound healing, urinary inconti-
nence, complications of diabetes, cardiomyopathies (such as diastolic dysfunction,
left ventricular hypertrophy, and congestive heart failure) (Bucala and Cerami
1992), and solid cancers and metastasis (Taguchi et al. 2000).

In nondiabetic people, LESP aging occurs very slowly. This is consistent with our
understanding that these age-associated diseases occur late in life because passage
of time is required for sufficient damage to accumulate on LESPs. It is noteworthy
that these same diseases emerge at an earlier age in diabetic individuals, whose
average blood sugar and lipid concentrations are higher than normal, thus driv-
ing the deleterious reactions faster (Cerami et al. 1987; Bucala and Cerami 1992;
Januszewski et al. 2003).

19.2 Normal Functions of the ECM

Our bodies are constructed of cells and extracellular materials. “The extracellular
matrix consists of macromolecules secreted by cells into their immediate environ-
ment. These macromolecules form a region of noncellular material in the interstices
between the cells” (Gilbert 2000). Some authors also refer to soluble extracellu-
lar materials as the “aqueous phase of the matrix” (Fawcett 1986). The structural
molecules of the ECM include proteins, glycoproteins, and proteoglycans. The
ECM holds cells together and co-creates the microenvironments in which they live
(Spencer et al. 2007). It includes noncellular portions of bones, cartilage, tendons,
and ligaments, as well as epithelial basement membranes, the renal glomerular base-
ment membrane, and the fibrous meshworks that give strength to blood vessels, skin,
tissues, and organs.

The most abundant protein in extracellular matrix is collagen. It is found in sev-
eral variants throughout the body, principally as strong, straight structural fibers,
providing strength to bones, cartilage, and tissues. Type IV collagen is a flat sheet
that forms basement membranes.

Another important extracellular protein is elastin, whose wrinkled meshwork
provides elastic properties to tissues. Elastic fibers are assembled extracellularly
from elastin and several glycoproteins (Shifren and Mecham 2006). Elastic fibers
form a shock-absorber to the hemodynamic pulses of the cardiovascular system.
The resilience of lung tissue, arteries, and skin are due to elastic fibers (Wagenseil
and Mecham 2007).

Laminin, vitronectin, and fibronectin are extracellular proteins that are important
in cell adhesion, differentiation, and migration over the ECM. Integrin receptors
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on cells attach to a conserved sequence of amino acids: arginine-glycine-aspartate
(RGD sequence), which is part of these proteins (Gilbert 2000). The composi-
tion of the ECM influences gene expression and differentiation state in resident
cells. Signals are sent to cell nuclei through receptor pathways and via cytoskeletal
contacts (Spencer et al. 2007).

19.3 Maintenance and Turnover of the ECM

Natural cellular processes slowly replace the aging collagen (Bucala and Cerami
1992). The natural turnover and remodeling of ECM proteins occurs at differing
rates in various tissues during aging. The average turnover time of collagen is char-
acteristically different in each different human tissue (Sell et al. 2005). Turnover
can remove aged ECM and replace it with new, undamaged ECM. However, in
many human tissues, the rate of turnover is slower than the rate of AGE accumu-
lation. Furthermore, elastic fiber repair or replacement is imperfect; there is clearly
an accumulation of damaged elastin with age (Robert et al. 2008; Wagenseil and
Mecham 2007; Shifren and Mecham 2006).

Turnover requires removal of old molecules and replacement by new molecules
in the proper arrangement. To the extent that old ECM is digested, removed, and
replaced, some of the chemical modifications or damage, such as glycation or
isomerization, would be removed and digested or excreted to the urine (Bucala
and Cerami 1992; Ahmed and Thornalley 2003; Vlassara and Palace 2003). The
complex details of ECM degradation are reviewed elsewhere (Robert et al. 2008;
Murphy and Reynolds 2002; Everts et al. 1996). Cells of the fibroblast lineage
(FLCs), in the connective tissue, degrade and replace LESPs. FLCs include fibrob-
lasts, chondrocytes, osteoblasts, adipocytes, smooth muscle cells, macrophages, and
mesenchymal stem cells (MSCs) (Alberts et al. 2002). FLCs can secrete digestive
enzymes that cleave the collagen strands so that the resulting fragments may be
phagocytosed and digested further within lysosomes (Everts et al. 1996; Murphy
and Reynolds 2002). Additionally, vascular endothelial cells and renal mesangial
cells may participate in AGE elimination by endocytosis (Vlassara and Palace
2003). After phagocytosis and intracellular digestion, some low-molecular-weight
glycated molecules may be released to the circulatory system and cleared through
the kidney (Vlassara and Palace 2003).

New collagen molecules are synthesized inside the fibroblasts, as three peptide
chains which twist together, like a rope, into a triple helix, stabilized by hydro-
gen bonds and disulfide bonds (Lodish et al. 2000; Alberts et al. 2002; Piez 2002).
These rodlike procollagen molecules are secreted, by exocytosis from Golgi vesi-
cles, into the extracellular space, where their ends are trimmed off. Fibroblasts pull
and arrange them into place as intermolecular electrostatic and hydrophobic interac-
tions guide the assembly of collagen fibrils, which can aggregate into larger collagen
fibers. After assembly, collagen molecules and fibrils are stabilized and strength-
ened by dilysine crosslinks (Lodish et al. 2000). These beneficial crosslinks are
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19 Repairing Extracellular Aging and Glycation

formed under regulated enzymatic control, and result in the mature collagen fibers.
Similarly, elastin molecules are held together by beneficial di-, tri-, and tetralysine
crosslinks, which are enzymatically formed after elastin strands are extruded into the
ECM (Shifren and Mecham 2006; Mathews and van Holde 1990). Later, over the
years, very slow processes of non-enzymatic glycation form additional crosslinks
and adducts, which are pathogenic, and which accumulate over the lifetime of the
collagen and elastin fibers.

Data indicate that the rate of formation of new AGEs and crosslinks per gram
of collagen is the same among all of the human tissues studied. Therefore, dif-
ferences in accumulation of glycated residues are apparently due to differences
in collagen turnover rates of the different tissues (Verzijl et al. 2000; Sell et al.
2005). Consequently, it has been possible to use glycation accumulation to estimate
turnover times for collagen in various other tissues. The results correlate well with
turnover times calculated by measuring racemization of aspartate residues in col-
lagen (Verzijl et al. 2000). Sell and colleagues reviewed collagen turnover rates in
discussing their own measurements of glycation crosslinks (Sell et al. 2005). Kidney
glomerular basement membrane (GBM) appears to turn over fairly quickly com-
pared with skin, which has collagen molecules more than 15 years old. Collagen in
articular cartilage reportedly has a turnover half-life of between 60 and 500 years
(Verzijl et al. 2000). Sivan, et al, report a turnover half-life of cartilage in human
intervertebral disks of 95 years in young adults, but turnover slows to 215 years in
older adults (Sivan et al. 2008).

As the number of glycation crosslinks increases over time, the collagen fibrils
are held more tightly together, making the ECM stiffer and perhaps less accessi-
ble to fibroblasts, macrophages, and enzymes that might attempt to digest and turn
it over (DeGroot et al. 2001c). Furthermore, some AGEs, such as the abundant
adduct, N-ε-carboxymethyllysine (CML), trigger apoptotic signals in the fibrob-
lasts (Alikhani et al. 2005). The fibroblast population declines in number over
the years, and many fibroblasts become “senescent.” Senescent fibroblasts do not
turn over ECM properly. Not only do they synthesize less ECM proteins but,
they secrete excessive amounts of inflammatory cytokines and matrix metallopro-
teinases (MMPs), which digest ECM proteins without replacing them properly
(Campisi 2005; Benanti et al. 2002). Similarly, articular chondrocytes decline in
number and slow their production of proteoglycans, contributing to osteoarthritis
and deterioration of articular cartilage (Taniguchi et al. 2009; DeGroot et al. 1999).

These events reduce ECM turnover rate, which extends turnover time, thus allow-
ing more time for more AGEs and crosslinks to form (Vater et al. 1979; DeGroot
et al. 2001a, b). These factors appear to create a vicious cycle of slowing the turnover
rate (DeGroot et al. 2001c). Observations show an exponential increase in crosslink-
ing with age in human skin (Sell et al. 1993, 2005 1993), cartilage (Verzijl et al.
2000), and lens (Cheng et al. 2004). In contrast, crosslinking increases very gradu-
ally with age in kidney GBM because the LESP turnover rate there is rapid enough
to avoid a vicious cycle (Sell et al. 1993, 2005).

The rate of collagen turnover in human tendons and skeletal muscles is increased
by physical exercise, as described in Section 19.5.2 (Kjær et al. 2006). Orthodontists
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have long noted that fibrous joints and bone undergo increased remodeling in
response to mechanical stress (Murphy and Reynolds 2002).

Inflammation induces a less desirable form of ECM remodeling. FLCs secrete
additional digestive enzymes, including MMPs, to rapidly open up the ECM (Everts
et al. 1996). Their purpose is to allow immune cells to move through the tissue, to
search for pathogens. This rapid, inflammatory digestion of ECM is not restored as
perfectly as during normal turnover and remodeling.

Scar formation is a form of ECM remodeling occurring during mammalian
wound healing. It has evolved to be rapid, to mend tissues and stop fluid loss,
but the resulting collagen cicatrix patch is not a perfect match to the surrounding
tissue.

19.4 Age-Related Deterioration of the ECM: Anatomy,
Chemistry, Structures, and Mechanisms
of ECM Pathologies

A variety of processes change the LESPs during aging. Sugar, lipids, and oxygen
react with ECM proteins to produce adducts and crosslinks, which we refer to as
AGEs/ALEs. These reactions are variously referred to as glycation, glycoxidation,
glyco-oxidation, nonezymatic glycosylation, and lipoxidation. Receptor molecules
on cell surfaces react to AGEs/ALEs, triggering harmful inflammatory responses.
During aging, some cells inappropriately attack the ECM by secreting extracellular
proteases. LESP turnover also slows because the FLCs senesce and decline in num-
ber. Meanwhile, excess fibronectin molecules accumulate, at least in mouse skin
(Labat-Robert 2004). Basement membranes thicken (Kohn 1978). Slow chemical
reactions convert several protein residues to other amino acids, which may affect
local shape and charge of the protein. Various serum proteins aggregate to form
extracellular (EC) protein deposits referred to as amyloid. In some regions of the
aging brain, protein fragments of the amyloid precursor protein (APP) aggregate
extracellularly to form EC deposits, called “β-amyloid plaques”, which are often
associated with Alzheimer’s disease.

19.4.1 Glycation Pathways

Glycation is the spontaneous covalent attachment of a sugar to a macromolecule,
such as protein, phospholipid, or DNA. Occurring without the need for enzymatic
facilitation, glycation is quite distinct from the beneficial, enzymatically controlled,
glycosylation of proteins, glycoproteins, and proteoglycans. Interstitial fluid allows
reactive sugars from the blood to diffuse to protein strands of the ECM, where a
complex network of spontaneous reactions takes place, as reviewed in many refer-
ences (Monnier et al. 2003; Ulrich and Cerami 2001; Rahbar and Figarola 2003;
Metz et al. 2003; Furber 2006).
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19 Repairing Extracellular Aging and Glycation

Fig. 19.1 Chemistry of ECM protein aging

The initial reaction is frequently a covalent bonding between glucose and a side

AQ1

chain of lysine in the protein strand (Eble et al. 1983). (See Fig. 19.1) The open-
chain form of glucose has a reactive aldehyde group which attacks the reactive
ε-amino group of the lysine side chain. These two groups join to form a Schiff
base (Cerami et al. 1987), causing loss of lysine’s positive charge.

glucose + (lysine in protein) ==> Schiff Base ==> Amadori product ==>

==> various intermediates and endproducts

The initial Schiff base is unstable and reversible, so often the glucose detaches,
leaving the protein unchanged. But sometimes, the Schiff base rearranges its bonds,
resulting in various structures called Amadori products. The Amadori products are
also unstable, and so many revert back to the Schiff base. The rest undergo further
reactions and rearrangements over time to form various stable end products, called
AGEs (Cerami et al. 1987). Some of the intermediate products are quite reactive.
The conversion of Amadori products to final, stable AGEs sometimes proceeds by
bonding with other reactive species. The Amadori adduct on a glycated protein will
sometimes bond to a reactive side group of a nearby protein chain. In this case,
the former sugar becomes a permanent covalent crosslink between adjacent protein
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chains or between domains of a folded protein. Several pathways are illustrated in
Fig. 19.1.

Glucose is not the most reactive sugar (Ulrich and Cerami 2001), but it is by
far the most abundant sugar in the blood (Cerami et al. 1987). Collagen is the most
abundant ECM protein. A variety of different AGEs and AGE-crosslinks are formed
in tissues via a complex brew of interacting reactions. Oxidation is involved in some
of these reactions. Sometimes, glycated arginine decomposes to become ornithine
(Sell and Monnier 2004).

Transition metal ions, such as copper and iron, increase the rate of glycation,
probably by producing hydrogen peroxide and free radicals (Sajithlal et al. 1999;
Xiao et al. 2007). Many glycation intermediates and end products, such as CML and
N-ε-carboxyethyllysine (CEL) (Fig. 19.1) bind transition metals, generate free rad-
icals, oxidize proteins and lipids, and accelerate additional glycoxidation reactions
(Saxena et al. 1999; Requena and Stadtman 1999).

A variety of crosslink structures have been produced in vitro from glycated pro-
teins and amino acids. Many of them have been found in vivo, as well . Chemically
identifying crosslink structures has been difficult because some analytical proce-
dures can destroy most AGEs before they can be characterized (Bucala and Cerami
1992; Biemel et al. 2002). At our present state of knowledge, almost all of the
pathogenic extracellular glycation crosslink structures that accumulate in humans
during aging appear to be one of two kinds: α-diketone crosslinks (Ulrich and
Cerami 2001; Ulrich and Zhang 1997), or glucosepane (Biemel et al. 2002; Sell
et al. 2005). The proposed reaction pathways forming these crosslinks are illustrated
in Fig. 19.1.

The α-diketone crosslink is believed to form after a sugar adduct transforms into
an Amadori ene-dione, which can attack the side chain of a lysine, cysteine, or
histidine residue on a nearby protein chain. The crosslink contains two adjacent
carbonyl carbons, forming an α-dicarbonyl structure called an α-diketone crosslink
(Ulrich and Cerami 2001).

Glucosepane is an AGE crosslink formed between a glycated lysine residue in
one protein chain and an arginine residue in a nearby chain. The side chain of argi-
nine has a reactive δ-guanidino group, which can react with oxoaldehydes and other
electrophiles. Glucosepane forms after a sugar adduct transforms into the dicar-
bonyl glycation adduct, dideoxyosone, which cyclizes and is attacked by the reactive
guanidino group of a nearby arginine side chain. These covalently bond, forming the
crosslink, glucosepane (Biemel et al. 2001).

In the condensation reactions of glycation and crosslinking, the positive charges
on the lysine and the arginine are lost.

19.4.2 Lipoxidation Pathways

Oxidation and fragmentation of lipids can result in several reactive small molecules
that can covalently bond to protein residue side chains. The Baynes lab has
pointed out that lipoxidation reactions have some common intermediate species
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with the glycation pathways, and can also result in some of the same endproducts
(Januszewski et al. 2003). Important reactive intermediates common to glycation
and lipoxidation are glyoxal and methylglyoxal, as illustrated in Fig. 19.1. CML
and CEL adducts are common to both the AGE and ALE pathway. In contrast,
other ALE protein adducts are produced by lipoxidation, but not by glycation, such
as 4-hydroxynonenal-lysine (HNE-Lys) and malondialdehyde-lysine (MDA-Lys)
(Miyata et al. 1999).

19.4.3 Amino Acid Isomerization, Deamidation, and Oxidation

Asparagine (L-Asn), an uncharged residue, can deamidate, via a series of reac-
tions, to become negatively charged aspartate (L-Asp or D-Asp) or isoaspartate
(L-IsoAsp or D-IsoAsp) (Clarke 2003; Shimizu et al. 2005). The change in charge
or shape might have some effect on the properties of LESPs, but this has not been
reported. By similar pathways, L-Asp can isomerize to D-Asp or to L-IsoAsp or
D-IsoAsp (Clarke 2003; Shimizu et al. 2005). This can affect integrin binding, dis-
cussed in Section 19.4.6. Other pathological consequences of these changes have
been proposed (Ritz-Timme and Collins 2002). Shimizu has observed that amyloid-
β peptides in Alzheimer brains contain high levels of IsoAsp in place of Asp, and
suggests that this might result in abnormal folding and deposition of β-amyloid in
plaques and vascular amyloids (Shimizu et al. 2005).

Racemization of aspartate residues has been used to estimate LESP turnover
rate in various tissues and at various ages, as was noted in Section 19.3 (Verzijl
et al. 2000). Over time, increasing amounts of D-Asp can be detected in collagen
and elastin protein chains (Ritz-Timme and Collins 2002; Sell and Monnier 2004).
Although humans have an endogenous intracellular enzyme, PCMT1 or PIMT,
which can reverse some of these conversions in intracellular proteins (DeVry et al.
1996; Clarke 2003), it is largely unable to access and repair ECM isomerization.
Small amounts of PIMT are released into the ECM at sites of injury, but it cannot
travel far into the matrix and does not reach most isomerized residues (Weber and
McFadden 1997).

Proteins can be oxidized to create AGE/ALE adducts without the presence of
sugar or lipids. During inflammation, macrophages produce EC hypochlorous acid
in their immediate vicinity, which can oxidize nearby serine and threonine residues,
resulting in acrolein, glycoaldehyde, and CML, as shown in Fig. 19.1 (Anderson
et al. 1999; Miyata et al. 1999).

19.4.4 ECM Protein Strand Breakage

Over time, attacks by EC proteases, as well as simple mechanical stresses, create
breaks in the protein chains of the ECM, including collagen, elastin, and fibronectin
(Li et al. 1999; Wang and Lakatta 2002; Wang et al. 2003; Labat-Robert 2004;
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Robert et al. 2008). In some situations, EC proteases such as MMPs are secreted by
“senescent” dermal fibroblasts and other FLCs (Parrinello et al. 2005). Furthermore,
senescent dermal fibroblasts downregulate TIMP-1, thus restricting normal regula-
tion of MMP activity (Labat-Robert 2004). In other situations, proteases are secreted
as part of inflammatory responses to signals from cell surface receptors, when they
are activated by AGEs or by fragments of elastin or fibronectin (see Section 19.4.7
and Fig. 19.2). Skin fibroblast secretion of proteases also increases in response
to sunburn (Labat-Robert 2004). Protein strand breaks can cause weakening of
collagen, fragmentation of elastin and fibronectin, and loss of tissue elasticity.

It is worth remembering that ECM strand lysis and digestion are not always
harmful; they are sometimes part of a controlled process of ECM turnover, remodel-
ing, or regeneration, as described in Section 19.3. However, aging and inflammatory
processes can result in excessive degradation of ECM that does not get regenerated
and leads to tissues becoming thinner, weaker, or stiffer.

As it ages, elastin is degraded via a multi-step process described by Robert,

AQ2

weakening tissue and reducing elasticity (Robert et al. 2008). Its elastic proper-
ties arise because its hydrophobic residues gather together in puckers, when not
under tensile stress, shrinking the structure. Like a spring, as stress increases,
the puckers pull apart, allowing the strands to extend. When tensile force is less,
they can pull together again. Over time, calcium ions and lipids bind to these

Fig. 19.2 Elastin and fibronectin degradation cycles of ECM protein strand lysis during aging
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hydrophobic residues, reducing their mutual hydrophobic attractions for each other.
This reduces the elasticity because it is easier for the strands stay in their extended
state. Furthermore, the calcium and lipid-bound, extended elastin strands expose
vulnerable sites for cutting by extracellular proteases. The lysed chains are no longer
elastic, and they release protein fragments that activate inflammatory responses
when they bind to the elastin-laminin receptor on cells (Robert et al. 2008), as
described in Section 19.4.7 and Fig. 19.2. Like an old rubber band, the tissue loses
elasticity and strength. Apparently, the elastic fibers are not readily replaced; per-
haps they are never correctly replaced in arterial walls or lung alveoli (Robert et al.
2008; Wagenseil and Mecham 2007; Shifren and Mecham 2006; Finch 2007).

MMPs also lyse fibronectin strands, creating fibronectin fragments. Some
fibronectin fragments are themselves proteolytic, having the ability to lyse collagen,
laminin, and fibronectin. This produces a vicious cycle of LESP degradation shown
in Fig. 19.2. Furthermore, some fibronectin fragments expose cryptic binding sites
not available on intact fibronectin. Binding to cell surface receptors triggers a variety
of deleterious cell responses (Labat-Robert 2004) described in Section 19.4.7.

19.4.5 Mechanical Consequences of Protein Alterations

Glycation adducts and crosslinks interfere directly with the mechanical properties
of LESPs. Changes in charge, and the spaces occupied by adducts, can affect the
conformation and behavior of proteins. Glycation adducts occupy space, and so may
alter folding, shape, and function of proteins. Electrostatic charge distribution also
affects folding and function. At physiological pH, the ε-amino side chain of lysine is
positively charged. The guanidino side chain of arginine is also positively charged.
Glycation or crosslinking converts these positively charged sites to neutral sites.
Crosslinks bind together adjacent protein strands, reducing flexibility and elasticity
of the tissue.

Elasticity is very important to cardiovascular function. Systolic blood pressure
increases when the shock-absorbing elasticity of the artery walls is reduced (Vasan
et al. 2001). High systolic blood pressure increases the risk for hemorrhagic stroke
in the brain. It also increases back-pressure to the heart. The heart responds by
increasing muscle mass, thickening its wall. A thicker, stiffer heart is less efficient
at refilling after each contraction, resulting in diastolic heart failure (DHF). Reduced
elasticity in the capillary walls restricts circulation to peripheral tissues. Mechanical
elasticity of arteries is also important to maintaining healthy endothelial function,
because nitric oxide (NO) signaling is reduced when stretching is limited (Zieman
et al. 2007).

Glycation crosslinking of the corpus cavernosum contributes to erectile dys-
function (Usta et al. 2004, 2006). Crosslinking of the urinary bladder decreases its
extensibility and capacity, resulting in the need for more frequent urination.

Glycation crosslinking is also believed to attach soluble plasma proteins to
LESPs and to proteins on the surfaces of endothelial cells. This could contribute
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to inflammatory immune responses, to the development of atherosclerosis, and to
the thickening of basement membranes, which can impair kidney function (Ulrich
and Cerami 2001; Vasan et al. 2001).

As discussed in Section 19.3, glycation crosslinks and adducts could be mechan-
ically restricting the ability of FLCs to turn over ECM, resulting in a vicious
cycle.

19.4.6 Altered Cell-Matrix Integrin Binding

Cells bind to the ECM through cell surface integrin molecules. These integrins are
also essential to cell migration over and through the ECM. The integrins recognize
and bind to specific peptide motifs in the EC structural proteins or glycoproteins,
importantly DGEA in collagen and RGD in fibronectin, vitronectin, and laminin
(Lanthier and Desrosiers 2004; Gilbert 2000). When arginine (R) or aspartate (D) in
a binding motif undergoes a chemical change that alters its shape or charge, the bind-
ing strength of cells to that EC protein is reduced because their integrin receptors no
longer have that RGD or DGEA sequence to bind to (Lanthier and Desrosiers 2004;
Sell and Monnier 2004). As noted earlier, arginine can lose its positive charge in sev-
eral ways by attachment of glycation adducts or formation of crosslinks. It can also
decompose to ornithine. Aspartate can isomerize. Loss of attachment to the ECM
can affect a cell’s gene expression profile and differentiation state, and may increase
the propensity of cells to become cancerous (Sell and Monnier 2004; Spencer et al.
2007). In some cases, cells die as a result. “The chondrocytes that produce the
cartilage of our vertebrae and limbs can survive and differentiate only if they are
surrounded by an extracellular matrix and are joined to that matrix through their
integrins (Hirsch et al. 1997). If chondrocytes from the developing chick sternum
are incubated with antibodies that block the binding of integrins to the extracellular
matrix, they shrivel up and die” (Gilbert 2000).

19.4.7 Cell-Matrix Interactions: Receptors, Signaling,
and Inflammation

Several distinct cell-surface receptors are activated by AGEs (Kass 2003). Other
receptors are activated by fragments of lysed fibronectin or elastin.

Historically, some of the AGE receptors have had different names. Vlassara and
Palace review several AGE receptors, which are found on the surfaces of various cell
types (Vlassara and Palace 2003). One specific AGE receptor complex is composed
of three subunits: R1, R2, and R3. Ohgami describes several other AGE receptors:
RAGE, galectin-3, 80 K-H, OST-48, CD-36, SR-A-I and SR-A-II. SR-A are mul-
tiligand macrophage scavenger receptors (MSR) of the class A family. CD-36 is a
multiligand scavenger receptor of the class B family (SR-B). CD-36 is expressed on
macrophages and smooth muscle cells (Ohgami et al. 2001).
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One specific receptor was named RAGE (Receptor of AGEs) by Stern’s group
(Stern et al. 2002). Stern’s review of RAGE notes the complexity of the RAGE
signaling system (Stern et al. 2002). RAGE is a member of the immunoglobu-
lin superfamily of cell surface receptors. It is found on a variety of cell types,
including macrophages and endothelial cells. It binds and is activated by various
ligands, including amyloid fibrils, amphoterin, S100/calgranulins, CML and proba-
bly other AGEs. Upon binding a ligand, RAGE induces multiple signaling pathways
within the cell (Stern et al. 2002). RAGE signaling activates inflammatory path-
ways, and inflammation is known to contribute to several processes important in
aging (Vlassara and Palace 2003; Finch 2007). RAGE signaling also induces trans-
differentiation of kidney epithelial cells to become myofibroblasts, thus impairing
kidney function (Jerums et al. 2003). RAGE and CD-36 activation by AGEs/ALEs
appear to contribute to the development of foam cells during atherogenesis (Vlassara
and Palace 2003; Ohgami et al. 2001). RAGE activation stimulates oxidant stress
and upregulates cell surface adhesion molecules and cytokines, stimulating vascu-
lar inflammation, remodeling, and atherogenesis (Zieman et al. 2007). Confusingly,
some authors refer to all AGE receptors as “RAGE”.

Not only do AGE receptors initiate signaling in response to AGE binding,
but also the presence of AGE causes increased expression of the RAGE and R3
receptors (Candido et al. 2003).

The macrophage scavenger receptor (MSR, probably SR-A and CD-36), and
other closely related receptors, appear to trigger an attack on AGE-modified proteins
by macrophages (Araki et al. 1995). Glycation adducts on the surface of articular
cartilage are major factors in the development of osteoarthritis, probably through
inflammatory mechanisms (deGroot et al. 2004; Verzijl et al. 2003). Glycated
peripheral nerve myelin is attacked by macrophages, contributing to peripheral neu-
ropathy (Cerami et al. 1987). Glycation can crosslink immunoglobulins to kidney
glomerular basement membrane; this then initiates complement-mediated damage
(Bucala and Cerami 1992).

Although the consequences of AGE receptor activation by AGEs/ALEs are
generally deleterious, these inflammation pathways are probably an inappropriate
immune activity that could, on occasion, be protective against infections. AGE
receptor signaling may also help to activate removal of AGE-damaged proteins by
phagocytosis (Bucala and Cerami 1992).

Some glycation intermediates and end products generate free radicals, causing
additional damage by oxidation and inflammation. CML generates free radicals,
and is considered to be the major signaling ligand implicated in causing inflam-
matory diseases and cancers (Taguchi 2003; Kislinger et al. 1999; Monnier et al.AQ3

2003). The complex associations between inflammation and age-related pathologies
have been reviewed in Finch’s recent book, The Biology of Human Longevity (Finch
2007). Included is coverage of in-vivo glyco-oxidation, dietary ingestion of AGEs
from cooked and processed foods, and more details on the role of AGE receptors in
inflammation.

AGEs also contribute to endothelial dysfunction by degrading endothelial nitric
oxide synthase (eNOS), which results in decreased NO concentrations (Bucala et al.
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1991; Bucala and Cerami 1992; Dong et al. 2008). NO signaling causes vasodila-
tion, so low NO contributes to high blood pressure. (Huang et al. 1995; Zieman et al.
2007) Decreased NO also contributes to erectile dysfunction (Haimes 2005).

As described in Section 19.4.4, elastin and fibronectin become fragmented during
aging. Protein fragments from degraded elastin act as agonists binding to the elastin-
laminin receptor. This upregulates the release of elastase endopeptidases, and the
production of reactive oxygen species (ROS), which can cause a vicious cycle of
further damage to elastin fibers, shown in Fig. 19.2 (Robert et al. 2008; Labat-Robert
2004).

Protein fragments from degraded fibronectin (Section 19.4.4 and Fig. 19.2)
bind to receptors on cell surfaces, generating signals that result in inflammation,
tissue degradation, and tumor progression (Labat-Robert 2004). Kume and col-
leages found that AGEs in cell culture inhibited the proliferation of human MSCs,
induced apoptosis, and inhibited differentiation into adipose tissue, cartilage, and
bone (Kume et al. 2005).

19.4.8 Extracellular Amyloidosis

“Amyloidosis is a clinical disorder caused by extracellular deposition of insoluble
abnormal fibrils, derived from aggregation of misfolded, normally soluble, pro-
tein. About 23 different unrelated proteins are known to form amyloid fibrils in
vivo” (Pepys 2006). Pepys further notes that these extracellular deposits interfere
with the proper functioning of the surrounding tissues, resulting in pathologies that
can become fatal. Although amyloidosis is rarely cited as a cause of human death,
one type, transthyretin (TTR-amyloid) is frequently found at autopsy in the hearts,
kidneys, and lungs of people aged over 80 (Pepys 2006). The first population-
based autopsy study found TTR-amyloidosis in 25% of humans aged 85 or more
from southern Finland (Tanskanen et al. 2008). Pepys and Lachmann propose
that amyloidosis may contribute to several diseases of the elderly. Furthermore,
they suggest that if not addressed, TTR-amyloidosis might become a more seri-
ous problem at transcentenarian ages if human lifespan is increased by successful
treatment of other age-associated diseases (Pepys 2006; Lachmann and Hawkins
2006).

Amyloid deposits resist attack by phagocytosis and most enzymes. Apparently
the SAP protein, normally found in blood, binds to amyloid deposits and protects
them. An experimental therapy, directed at SAP, is currently in human trials. The
drug crosslinks soluble SAP, thus preventing it from binding to amyloid deposits.
If the therapy is successful, the body’s natural scavengers would then clear up the
amyloid deposits (Pepys 2006; Lachmann and Hawkins 2006).

Nattokinase is a bacterial serine protease enzyme found in the fermented
Japanese soybean food called, “natto”. Preliminary experiments have shown that
this enzyme can degrade several kinds of amyloid molecules in vitro (Hsu
et al. 2009). It is interesting that it remains active in the bloodstream after oral
assimilation, and that it is part of a traditional human food. Further research is
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needed to determine whether it can clear up TTR-amyloid or other deposits in older
people. Even if not, its structure might inform future rational drug design efforts
(Section 19.5.8).

19.4.9 β-Amyloid Plaques in the Brain

Extracellular deposits (β-amyloid plaques) of amyloid-β protein (A-β) accumulate
in some brains as they age. A significant constituent is a 42 amino acid fragment
of APP, “amyloid-β1-42” or “A-β42”. Although often associated with Alzheimer’s
disease, there is considerable debate regarding whether these β-amyloid plaques
are very harmful (Castellani et al. 2007). However, it is generally agreed that in
solution, A-β42 produces reactive oxygen species (ROS), which can damage nearby
neurons. Soluble A-β42 also activates RAGE, which contributes to neurotoxicity
(Sturchler et al. 2008). Importantly, the plaques are in dissociable equilibrium with
the soluble A-β42, and thus can serve as a reservoir of the toxic species (Adlard et al.
2008).

19.5 Present and Possible Future Therapeutic Approaches
for Better Maintenance and Repair of the ECM

This section examines prospects for therapies to slow AGE formation or to repair
EC damage. The importance of glycation in diabetes and aging has led to searches
for therapies that inhibit the glycation reactions or safely remove the products
of glycation. Glycoxidation moieties, AGEs, and crosslinks might be chemically
removed from ECM by drugs or bioengineered enzymes. Enhancement of natural
ECM turnover and replacement could regenerate damaged tissues.

19.5.1 Diet, Fasting, and Calorie Restriction

As a non-enzymatic chemical reaction, we would expect glycation rate to increase
with greater blood sugar concentration (Eble et al. 1983). Where glycation rate
exceeds turnover rate, we expect to see accumulation of AGEs. In fact, the glycation
rate does change with glucose concentration as expected. AGE/ALE accumulation
rate is higher in diabetics, who have higher average blood sugar and lipid levels.
Glycation rate decreases with calorie restriction, which lowers average blood sugar
level. Rats fed calorie-restricted diets have less glycation crosslinking than rats that
consume more calories (Lingelbach et al. 2000; Cefalu et al. 1995). Furthermore,
Snell dwarf mice produce no growth hormone, and consequently have lower aver-
age blood sugar levels than control animals. Collagen glycation rates increase more
slowly with age in Snell dwarves, they have much lower rates of cancer in old age,
and they live longer (Flurkey et al. 2001; Alderman et al. 2009).
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Thinking about therapeutic regimens, although it would be impossible to reduce
the blood sugar and lipid concentrations to zero, average levels could be low-
ered by exercise, periodic fasting, or by constant or intermittent calorie restriction.
Consequently, any of these alone, or in combination, should slow the rate of
glycation.

High-temperature cooking produces AGEs/ALEs which, if ingested, would con-
tribute to the body’s AGE burden. The greatest quantity are created by frying or
broiling foods containing fats or meats. Few are found in boiled or raw vegetarian
foods (Goldberg et al. 2004). High levels of heat-stable glycation adduct residues,
CML and CEL, were found in pasteurized and sterilized milk (Ahmed et al. 2005).

Inflammatory markers in the blood of diabetic humans and animals increased
substantially after a few weeks on a high-AGE diet (Vlassara et al. 2002). This
indicates that AGEs/ALEs do enter the systemic circulation from food digestion
and increase inflammation. Similarly, although CR often improves the health and
extends the lifespan of laboratory mice, when nondiabetic mice are maintained on
a CR diet that is cooked to increase dietary AGEs, they have higher serum AGEs,
oxidative stress, inflammatory markers, organ damage, and shorter lifespans than
matched CR controls that received the same total calories, but not cooked food (Cai
et al. 2008). A cautious person with an interest in optimizing health and lifespan
might choose diets that minimize ingested AGEs and ALEs.

19.5.2 Exercise

Exercise increases the rate of turnover of collagen in human tendons and skele-
tal muscles, resulting in improved strength and flexibility (Kjær et al. 2006). As
Kjær and colleagues observe, tendons contain fibroblasts. Weight-bearing exercise
induces the surrounding tissue to release growth factors (IGF-1, IGF-1 binding pro-
teins, TGF-β, and IL-6), which induce fibroblasts to remodel the collagen of the
ECM. Collagen degradation is increased during the first day after exercise. However,
new collagen synthesis is upregulated in tendon and in skeletal muscle for the first
three days following intense exercise. Thus, they caution, to prevent overuse injury,
it is important to space out exercise sessions. “If training sessions are too close to
one another, an athlete may not gain maximum benefit from the stimulated collagen
synthesis, but is instead likely to be in a net state of collagen catabolism.” (Kjær
et al. 2006).

There appears to be a synergistic benefit to combining exercise and crosslink
breaker therapy (described in Section 19.5.4).

19.5.3 Inhibitors of Glycation, Lipoxidation, and AGE Formation

Many of the studies of potential glycation inhibitors do not look at LESP glycation
in normally aging humans. They look instead at levels of soluble AGEs and reactive
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glycation intermediates in the blood of diabetic humans and rats. These blood lev-
els do not accumulate over time, so they are not useful as biomarkers of aging.
To the extent that a glycation inhibitor could reduce these blood levels in nondia-
betic humans, then it might slow the rate of accumulation of glycation adducts and
crosslinks in the extracellular matrix. That, however, is speculative at this time.

There are several intervention points in the cascade of events leading to pro-
duction of AGEs/ALEs (including AGE crosslinks). Table 19.1 lists several dozen
compounds that inhibit AGE production. Some are lipid membrane soluble, while
others are hydrophilic. Many of these inhibitory compounds exhibit multiple modes
of action, such as: trapping reactive carbonyls, interacting with dicarbonyls, quench-
ing ROS, preventing autoxidation, chelating metals such as copper, inhibiting nitric
oxide synthase (NOS), combatting inflammation, binding to glucose, inhibiting
crosslinking of proteins, inhibiting early Amadori reactions, or inhibiting post-
Amadori reactions. A few of these inhibitors are also able to break AGE crosslinks
after they have formed. Crosslink breakers are examined in more detail in the next
section.

Table 19.1 Inhibitors of glycation

Inhibitor Notes Ref

ALT-946 = N-(2-acetamidoethyl)
hydrazinecarboximidamide HCl

V1,T,J,R3

ALT-462 = triazine derivative V1
ALT-486 = benzoic acid derivative V1
aminoguanidine = pimagedine DCI, EAi, TRC,

NOSI, MC, SAi
V1,T,J,R3

ascorbate = vitamin C AO R3
aspirin AOp, AO, AI R3
benfotiamine LS R3
benzoic acid AOp, AO R3
carnosine = β-alanylhistidine AO, MC, TRC R3
carotenoids AO R3
cinnamon, aqueous extract AO, TRC P
curcumin AO, AI, Ci R3
cysteine TG F, S
desferoxamine R3
diaminophenazine = 2,3 DAP DCI, MC R3
Diclofenac = Voltran AI R3
EGCG = epigallocatechin gallate Ci W
fasting BGL F
garlic A
glutathione TG F, S
histidine MC, TRC
Ibuprofen AI R3
Indomethacin AI R3
Inositol AO, Gb R3
LR-9 = 4-(2-naphtylcarboxamido)

phenoxyisobutyric acid
MC, TRC R3

LR-series # 20, 102 MC,PAi, CB R3
LR-23 CB R3
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Table 19.1 (continued)

Inhibitor Notes Ref

LR-90 MC, PAi, TRC R3
luteolin AO,EAi, PAi, Ci W
metformin = Glucophage = dimethylbiguanide DCI,EAi,PAi,CB R0,R3
MEAG = morpholino-ethyl aminoguanidine V1
OPB-9195 = (±)-2-isopropylidenhydrazono-4-oxo-

thiazolidin-5-ylacetalinide
DCI, MC V1, R3

PABA AOp, AO R3
D-penicillamine R3
pentoxyfylline R0,R3
Pioglitazone DCI, MC R0,R3
Probucol AO R3
Pyridoxamine PAi,LEi,DCI, MC Me,V1,R3
quercetin AO, EAi, Ci W
resveratrol = 3,4,5-trihydroxystilbene R3
rutin EAi, Ci W
salicylic acid AO, AOp R3
Tenilsetam = (+)-3-(-2-thienyl)-2-piperazine Ci R3
thiamine pyrophosphate = Vitamin B1 PAi V1, R3
thyme Mo
Tocopherol = vitamin E AO R3

Abbreviations: AO Antioxidant, AI Antiinflammatory, BGL Lowers blood glucose, CB Cross link
breaker, Ci Inhibits cross link formation, DAOi Diamine oxidase inhibitor, DCI Interacts with dicar-
bonyls, EAi Early Amadori stage inhibitor, Gb Binds to glucose, LS Lipid soluble, LEi Lipoxidation
endproduct inhibitor, MC Metal chelator, AOp Prevents autoxidation, PAi Post Amadori inhibi-
tion, SAi Inhibits semicarbazide-sensitive amine oxidase, TG Transglycation, TRC Traps reactive
carbonyls
References: A = Ahmad et al. 2007; F = Furber 2006; J = Jerums et al. 2003; Me = Metz et al.
2003; Mo = Morimitsu et al. 1995; P = Peng et al. 2008; R0 = Rahbar et al. 2000; R3 = Rahbar
and Figarola 2003; S = Szwergold 2005; T = Thornalley 2003; V = Vasan et al. 2001; W = Wu
and Yen 2005

Some well-known antioxidant or anti-inflammatory substances appear to inhibit
AGE formation: aspirin (Bucala and Cerami 1992), ibuprofen, inositol, probucol,
vitamins C and E, carotenoids, salicylic acid, PABA, and benzoic acid. Rahbar and
Figarola conclude that because not all antioxidants inhibit AGE formation, those
that do are employing another mechanism of action. They note that in clinical trials
of diabetic patients, treatments with antioxidants that don’t inhibit AGE formation
do not improve their condition (Rahbar and Figarola 2003). Aspirin acetylates spe-
cific primary amino groups, thereby blocking their glycation (Bucala and Cerami
1992).

Aminoguanidine (AG or pimagedine) has been well studied in clinical trials of
diabetic patients. It is a nucleophilic compound that traps reactive carbonyl groups
(Ulrich and Cerami 2001). In addition to inhibiting AGE formation, it also inhibits
NOS (Jerums et al. 2003). However, there have been safety concerns and apparently
low clinical efficacy (Thornalley 2003). Human side effects included pernicious
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anemia and anti-nuclear antibodies. In rat studies, pancreas and kidney tumors
developed (Rahbar and Figarola 2003).

Pyridoxamine (PM) is the 4-aminomethyl form of vitamin B6. PM inhibits for-
mation of AGEs and ALEs, apparently by reacting with dicarbonyl intermediates. In
diabetic rats, oral PM stayed in the blood longer, and had greater therapeutic benefit
than similar doses of AG (Metz 2003). The Baynes lab has showed that PM breaks
dicarbonyl compounds in vitro (Yang et al. 2003). Although they were unable to
show in vivo breaking of AGEs, this might be worthy of further study by other labs.

Some radical trapping compounds alter branchpoints in the AGE formation
reaction network, inhibiting the formation of some AGEs, while increasing the for-
mation of others. For example, 6-dimethylaminopyridoxamine (dmaPM) and Trolox
each inhibit the formation of glucosepane crosslinks in vitro, but increase the pro-
duction of other glycation products (Culbertson et al. 2003). This is especially
interesting because, as discussed in Section 19.5.4.4, no breaker for glucosepane
crosslinks has yet been identified.

Metformin (N,N-dimethylimidodicarbonimidic diamide mono-hydrochloride)
(glucophage) (pKa = 12.4) is a drug prescribed to improve glucose tolerance in
type-2 diabetes. It has also been shown to inhibit glycation in vitro (Rahbar et al.
2000), to bind dicarbonyl glycation intermediates, inactivating them (Beisswenger
and Ruggiero-Lopez 2003), and to break glycation crosslinks in vitro (Rahbar and
Figarola 2003).

Benfotiamine is a lipid soluble analog of thiamine (vitamin B1). In diabetic rats,
it effectively reversed neuropathy and reduced accumulation of glycation intermedi-
ates (Stracke et al. 2001). Its effect on normally aging humans has not been reported.
However, its mode of action seems to control pathways that are induced by dia-
betic hyperglycemia (Hammes et al. 2003). It would therefore not be helpful in
nondiabetic situations, such as normal aging.

Carnosine (β-alanyl-L-histidine) is a dipeptide that is heavily marketed as a nutri-
tional supplement. Its putative ability to inhibit protein glycation or crosslinking in
humans is still under investigation. Hipkiss, who has been studying carnosine for
years, notes that “carnosine may be an effective anti-glycating agent, at least in
model systems” (emphasis added) (Hipkiss 2005).

Glutathione and cysteine may have anti-glycating ability. The glucose-lysine
Schiff base can spontaneously donate its sugar moiety to nucleophiles such as cys-
teine and glutathione, restoring the protein to its original, unglycated condition. This
has been observed in vitro without any enzymes present. The sugar binds to the sul-
fur atom of the cysteine. Szwergold et al. propose that this reaction also occurs
spontaneously within cells, and that the glycated glutathione or cysteine is then
pumped out of the cell. In support of their model is the observation that glycated cys-
teine is found in human urine, and that levels are higher in diabetic urine (Szwergold
et al. 2005). They did not comment on the possibility of transglycation taking sugar
from extracellular collagen. Cysteine and even glutathione may be small enough
to go wherever glucose goes among the collagen molecules. Thus, there may be
possible benefits to therapeutic use of oral N-acetylcyteine (NAC) or parenteral glu-
tathione to increase concentrations of these nucleophiles in the extracellular fluid
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that bathes collagen. NAC is commonly available as a nutritional supplement. Some
clinics offer intravenous glutathione injections. Note however, that this reaction
deglycates only the earliest step in the glycation pathway. After the glycation has
proceeded to form Amadori products, AGEs, or crosslinks, transglycation does not
occur. Nonetheless, even partial inhibition of glycation may be beneficial.

In general, AGE inhibitors are tested in vitro and in vivo. In diabetic models,
they slow down the rates of physiological deterioration to some extent. However,
for long-lasting benefits and rejuvenation, we must look for therapies that actually
reverse or repair accumulated LESP damage, which has already occurred, including
crosslinks, glycation, fragmentation, and lipoxidation.

19.5.4 Deglycators and Crosslink Breakers

Within mammalian cells, endogenous mechanisms exist for reversing glycation
(Section 19.5.4.1). Outside cells, in the ECM, glycation is destroyed wherever the
ECM is turned over. Several approaches are being explored to design therapies to
break crosslinks or remove glycation adducts on ECM proteins. Some are based on
small molecule drug designs. Others are based on adapting strategies from intra-
cellular enzymes or fungal enzymes. A significant consideration is that much of the
collagen matrix is densely packed so that glycation crosslinks may not be accessible
to large enzyme molecules. If a large enzyme cannot travel to its target crosslink,
it cannot break it. Perhaps this problem might be circumvented if small molecule
crosslink breakers could loosen up the ECM enough for larger enzymes to get in
and finish the job.

19.5.4.1 Intracellular Enzymatic Deglycation

Enzymes have been found in some cells that are able to remove Amadori adducts
from intracellular proteins. In mammals, fructosamine 3-kinases (FN3Ks) have been
found to act as Amadoriases. They phosphorylate Amadori products, which then
spontaneously deglycate, leaving the original proteins good as new (Szwergold
et al. 2001). However, Amadoriases do not work on AGEs or crosslinks, because
their chemical structure is changed from the early Amadori structure. Furthermore,
Amadoriases are inside the cell and they require ATP. This presents problems
because crosslinked collagen is outside the cell, and a source of extracellular ATP
is not available. So FN3Ks are not useful for repairing ECM (Monnier et al. 2003).
However, they might serve as a starting point for future development of useful drugs
or designer enzymes.

19.5.4.2 Fungal Amadoriase Enzymes

Enzymes that are able to deglycate small Amadori products, such as glycated amino
acids, have been isolated from fungi. However, the enzymes discovered so far do not
deglycate proteins. This is apparently due to both steric hindrance and electostatic
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interactions (Monnier et al. 2003). Their mechanism is to oxidize the fructosy-
lamino Amadori product, releasing the original unglycated amine (such as lysine),
along with hydrogen peroxide and oxidized sugar (such as glucosone). Thus, they
are also called “fructosyl amine oxidases”. An advantage of this reaction is that it
does not require ATP, so it could take place outside of cells. A disadvantage is that
both hydrogen peroxide and glucosone are reactive, and could cause further oxida-
tive damage. Although these enzymes do not deglycate collagen, they have been
sequenced, and the structure has been determined (Collard et al. 2008). They might
suggest strategies for development of new agents.

19.5.4.3 Thiazolium Salts and Other Small Molecules

Several small molecules have been reported to have the ability to chemically cleave
some of the glycation crosslinks or adducts in LESPs. Torrent Pharmaceuticals
was granted several patents covering crosslink-breaking by pyridinium structures,
and later published promising results with diabetic rats treated with compound
“TRC4149” (Pathak et al. 2008). Rahbar, at City of Hope, was granted patents
for the crosslink-breaking ability of several other structures, including metformin
(Rahbar and Figarola 2003). However, his recent publications have focused on their
glycation-inhibition rather than crosslink-breaking (Rahbar 2007; Figarola et al.
2008). The crosslink-breaker furthest along in human clinical trials is a thiazolium
salt discovered by Cerami and colleagues.

In the early-1990s, Ulrich and Cerami were examining thiazolium compounds for
their ability to interact with α-dicarbonyl structures in advanced Amadori products
(Ulrich and Zhang 1997; Ulrich and Cerami 2001). These thiazolium compounds
contain a nucleophilic catalytic carbon (position #2) analogous to thiamine (vita-
min B-1) and a second nucleophilic carbon, attached to the nitrogen, nearby. These
two carbons could interact with the two carbonyls of α-dicarbonyl structures (Vasan
et al. 1996). They were surprised to discover that these compounds not only inhib-
ited the progression of Amadori products to crosslinks, but they were also able to
break model crosslinks in vitro (Ulrich and Cerami 2001). Many similar thiazolium
compounds were tested and found to have crosslink-breaking activity. Patent rights
were assigned to Alteon Pharmaceuticals (later renamed Synvista Therapeutics).
Animal testing showed promising results in reversing collagen crosslinking, and
improved functioning of kidneys, penile erections, heart, arteries, and other organ
systems in aged or diabetic animals (Asif et al. 2000; Vaitkevicius et al. 2001;
Usta et al. 2004, 2006). Similar beneficial results have been reported by Cheng
and colleagues at the Beijing Institute of Pharmacology and Toxicology, who
have been testing a structurally similar thiazolium compound, “C36” (Cheng et al.
2007).

Alteon chose alagebrium, 3-(2-phenyl-2-oxoethyl)-4,5-dimethylthiazolium chlo-
ride, to use in their clinical trials. Early papers refer to this compound and its close
relatives as “ALT-711”. Some of the early testing was done with bromide analogs
(PTB), with or without the methyl groups. PTB was abandoned by Alteon in favor of
the dimethyl chloride, alagebrium, because PTB is less active and unstable (Ulrich
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and Cerami 2001). PTB degrades rapidly in aqueous solution. Furthermore, bro-
mides may have undesirable side effects (Thornalley and Minhas 1999; Vasan et al.
2001, 2003).

Alagebrium is now the crosslink breaker furthest in clinical development for
human oral therapeutic use. Alagebrium appears to be effective at partially reversing
some human pathologies, probably by breaking α-diketone crosslinks in collagen
and elastin (Vasan et al. 1996). Possibly, it also reacts with other α-dicarbonyl gly-
cation intermediates or endproducts, such as methylglyoxal (MGO) (Yang et al.
2003; Haimes 2007).

In 2003, the Baynes lab published a report suggesting that thiazolium bromides
“do not break Maillard crosslinks in skin and tail collagen from diabetic rats” (Yang
et al. 2003). This is a controversial claim, contradicting a large number of studies,
which show evidence that thiazolium salts do break crosslinks in tail tendon col-
lagen from diabetic rats (Vasan et al. 1996, 2001, 2003; Ulrich and Cerami 1997;
Wolffenbuttel et al. 1998; Cheng et al. 2007). The situation is confounded because
different techniques were used by different labs, so we cannot say, with certainty,
why their results differ. Note, however, that the Baynes report did not use the stable
alagebrium chloride, but rather, the less active, unstable bromide salts (Yang et al.
2003).

Interestingly, the Baynes group did acknowledge that the thiazolium halides
produce beneficial clinical physiological results in vivo. However, they proposed
different mechanisms of action. They suggested that alagebrium might be inhibit-
ing the production of new crosslinks, as well as inhibiting glycoxidation reactions.
Then, over a period of time, they reasoned, natural turnover of collagen would result
in a reduction in the number of crosslinks, creating the appearance of crosslinks
being broken (Yang et al. 2003). However, the Baynes hypothesis appears to be
inconsistent with the multiyear long collagen turnover times calculated by indepen-
dent labs (Sell et al. 2005), and the rapid in vivo benefits observed with alagebrium
(Asif et al. 2000; Kass et al. 2001; Vaitkevicius et al. 2001).

Jerums and colleagues report that alagebrium treatment reduced kidney damage
(Jerums et al. 2003). There are also reports that alagebrium treatment reverses the
AGE-stimulated progression of several pathologic markers in the hearts of diabetic
rats, including collagen solubility and expression of the AGE receptors RAGE and
R3 (Candido et al. 2003; Kass 2003; Tikellis et al. 2008).

Phase 2 clinical trials of alagebrium began in 1998 (Vasan et al. 2003). As of
mid-2009, several phase 2 trials had been completed, but Synvista had stopped
further trials citing lack of funds. By 2007, about 1000 people had taken alage-
brium in various phase 2b clinical trials (Haimes 2007). So far, the safety profile
of the drug appears to be excellent in human subjects. Concerns arose in December
2004 regarding liver cell irregularities in male Sprague-Dawley rats that had been
given alagebrium throughout their whole lives. After investigating, FDA allowed
continuation of clinical trials. Apparently, Sprague-Dawley rats have exhibited sim-
ilar changes in response to other approved drugs, such as statins. It appears that
this breed of lab rat is not a reliable model for long-term human drug safety tests,
although it was long been used because it is easy to handle (Creel 2008).AQ4
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Alagebrium treatments have produced improvements in DHF patients, for whom
ventricular hypertrophy was reduced and heart function was improved (Little et al.
2005). Other patients with systolic hypertension showed improvement in arterial
pulse pressure and arterial compliance (Kass et al. 2001). Endothelial function was
also improved, probably because removal of AGE crosslinks allowed better stretch-
mediated release of NO (Zieman et al. 2007).

Preliminary results indicate that alagebrium is able to repair erectile dysfunc-
tion, probably due to improved vascular compliance, NO signaling, and endothelial
function (Coughlan et al. 2007). This was first reported in studies of diabetic rats
(Usta et al. 2004, 2006). This author has heard firsthand reports from several men
remarking on their improvement after several weeks or months of oral alagebrium
(100–300 mg per day).

There appears to be a synergistic benefit of combining exercise (see Section
19.5.2) and alagebrium therapy. To the extent that alagebrium breaks LESP
crosslinks and improves flexibility, exercise would be easier and tissue remodeling
would be facilitated (Haimes 2007). This author has heard firsthand reports from
several people remarking on their improved exercise tolerance after several weeks
of oral alagebrium (100–300 mg per day). Two people noted that reduced arthritis
allowed them to hike longer in the hills.

In June 2005, Alteon announced that it had granted a nonexclusive worldwide
license to Avon Products, Inc. for the use of 2-amino-4,5-dimethylthiazole HBr to
improve skin wrinkles and elasticity. Very soon after, Avon brought out its “Age
Intensive” skin cream, containing this substance as a minor ingredient. The product
is popular, although clinical comparisons with common moisturizers have not been
published.

Anecdotally, several longtime users of alagebrium have told the author that they
noticed improvements in bladder capacity, peripheral neuropathy, erectile function,
kidney function, angina pectoris, or joint pain after several months of usage. Each
was taking 100–400 mg per day, orally.

Several people have been giving alagebrium to their elderly dogs (ages 10–16
years), mixed with food or water. They told the author that their dogs had previ-
ously been exhibiting arthritis, low energy, and restricted movement. After about a
month on alagebrium, their dogs were running and jumping as though they were sev-
eral years younger. Their subjective assessment was that the alagebrium treatments
had given their pets two additional years of quality life. Dosage was approximately
1–2 mg/kg per day.

19.5.4.4 Glucosepane Crosslink Breakers

So far, no small molecule has been identified that breaks glucosepane crosslinks.
However, because an assay has not yet been implemented to test for glucosepane
breakers, it is possible that some of the small-molecule breakers described in Section
19.5.4.3 might actually break glucosepane, yet we would not know it.

A drug discovery effort targeted at breaking glucosepane crosslinks might yield
therapeutic leads. The isoimidizole structure at its core may be unique enough that
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a chemical agent could cleave it while not harming other essential extracellular
structures.

Besides small molecule drugs, it is also possible that enzymes might be discov-
ered or designed that could break glucosepane. However, there is not much space
within the tightly packed collagen matrix where the crosslink is located, so enzymes
might not fit. Nevertheless, we cannot rule out the possibility that a small enzyme
might slip in, first breaking the most exposed crosslinks, and thereby opening the
collagen matrix to access the more cryptic crosslinks. Perhaps in combination with
alagebrium, other small molecules, and exercise, glucosepane-breaking enzymes
might be even more effective.

As noted in Section 19.5.3, a couple of compounds have been found to inhibit
glucosepane formation in vitro. Development of a drug to inhibit glucosepane
formation in vivo could be beneficial until a therapy to remove glucosepane is
developed.

19.5.5 Tuned Electromagnetic Energy

It is attractive to speculate that laser frequencies might exist that would safely pene-
trate tissues, while coupling energetically enough with crosslink structures to break
them. Experiments with tunable lasers could explore frequencies in search of effec-
tive ones. There is no assurance of success. Even if cleaved, the crosslinks might
quickly reform by the reverse reaction. Nevertheless, I predict that the costs of pre-
liminary experiments on pieces of meat could be low and the potential payoff high.
A physics lab that has a tunable laser, in collaboration with a biochemist who can
assay crosslinks in animal tissue, could yield answers in a very short time.

19.5.6 Removing β-Amyloid Plaques

Considerable work is underway to find treatments for Alzheimer’s disease. A
promising approach is directed at solubilising and flushing out the extracellu-
lar β-amyloid plaques, by removing the metals around which they aggregate. An
8-hydroxyquinoline agent, PBT2, in clinical trials sponsored by Prana Bio-
technology, is showing early success (Adlard et al. 2008).

19.5.7 Enhancing Turnover of ECM by FLCs

Human FLCs have the means to digest LESPs, and to replace them with newly
synthesized fibers (Bucala and Cerami 1992; Murphy and Reynolds 2002). Unlike
crosslink-breaking enzymes, which might be unable squeeze between collagen fib-
rils to reach crosslinks, enzymes secreted by FLCs to digest ECM start at the outside
of the collagen fiber and chew their way in, so steric hindrance is not a problem.
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Even cartilage and bone can be remodeled by appropriate cell types. Future devel-
opments might stimulate or reprogram FLCs to more quickly digest and replace
age-damaged ECM in a controlled fashion. We might speculate that future bioengi-
neers could integrate AGE receptors into signaling systems in FLCs to target these
activated FLCs to turn over glycated ECM.

An important challenge will be to ensure that the turnover is well regulated,
to prevent either thinning and loss of ECM or excess, disorganized fibrosis and
cicatrix formation. Obviously, inducing widespread scar formation would not be a
desirable fix for AGE accumulation. Ideally, working fiber-by-fiber, even the strands
reinforcing blood vessels might be replaced without catastrophic system failure.

With advancing age, the population of FLCs declines and becomes less active
at turning over LESPs (Campisi 2005). It is reasonable to foresee that a success-
ful therapy would expand the numbers of FLCs, and also stimulate their activity
of turning over LESPs. For example, platelet-derived growth factor (PDGF) and
insulin-like growth factor-1 (IGF-1) have long been known to promote growth and
mitosis of mesenchymal/fibroblast lineage cells (Bucala and Cerami 1992). Recent
work at the University of Glasgow has shown that inserting an extra copy of the
TERT gene into chondrocytes from articular cartilage results in longer telomeres
and increased replicative lifespan, without neoplastic transformation. So far, the
Glasgow results have been reported only for cell cultures of chondrocytes from
young dogs (Nicholson et al. 2007). More work is needed to reveal whether altered
integrin binding in old cartilage (Section 19.4.6) would harm the transgenic chon-
drocytes, or whether the activated FLCs could turn over the old ECM before it could
harm them. Careful work could refine the optimal dosage, timing, and combinations
of factors to expand cell numbers and induce differentiation into cell types best able
to turn over ECM.

FLC stimulation might be done either in the body or in cell culture. In the
body, biological response modifiers such as signaling molecules could be admin-
istered or gene therapy vectors might be injected. These agents might be designed
to act directly on FLCs or they might work indirectly through other cells, which
would signal to the FLCs. However, dosing of the target cells could not be
uniform or precise, or responsively tailored to observed progress on the dif-
ferentiation path. Furthermore, it might be difficult to prevent unintended cell
populations from proliferating in response to systemically administered therapies.
These issues might not be problematical if the treatment could be something like
restoring youthful levels of hormones and other signals. There is still much to be
learned.

An alternative method would be to extract and treat FLCs in culture. Fibroblasts,
bone marrow stem cells, or MSCs could be treated ex vivo to increase their numbers.
Then they could be monitored while differentiation agents are used to enhance their
activity. Finally, the activated autologous cells would be injected into the patient to
increase regeneration of the ECM (see also the Chapter 14).

As noted in Section 19.3, exercise and mechanical force can increase the rate
of collagen turnover and ECM remodeling by fibroblasts in various human tis-
sues. Close examination of the signaling pathways and cytoskeletal responses to
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exercise and force could reveal clues to developing more general ECM rejuvenation
therapies.

Useful lessons about enhancing human ECM turnover may also be learned by
studying the regeneration of amphibians, such as the axolotl (Ambystoma mexi-
canum). Some amphibians and invertebrates are able to replace whole body parts
after amputation. As Muneoka and colleagues note in their review, axolotls repair
wounds and amputations perfectly, without scar formation. For example, axolotl
limb regeneration results in a perfectly formed new limb, with new bone, new
joints, new ECM, and new cells, all in exactly the correct pattern (Muneoka et al.
2008). Importantly, in the early phase of regeneration, the ECM at the wound site is
extensively remodeled by migrating dermal fibroblasts, which have positional infor-
mation to correctly rebuild the regenerating structure (Rinn et al. 2006). Collagen
in the stump is first digested and then new collagen is created as the wound site is
remodeled. Subsequently, additional ECM is built and populated by cells to rebuild
the entire limb (Gardiner 2005).

It is encouraging that in humans, repair of oral mucosa wounds inside the mouth
does not involve scar formation; it somewhat resembles amphibian regeneration
(Schrementi et al. 2008). Furthermore, Muneoka, Han, and Gardiner point out,
“wounds in [human] fetal skin heal without forming scars–yielding perfect skin
regeneration and indicating that the switch to a fibrotic [scar-forming] response
arises with the developmental maturation of the skin.” This suggests that the
human genome still possesses the ancient genes needed to accomplish regenera-
tion (Muneoka et al. 2008). An important challenge will be to learn how to activate
those inherent abilities, in a controlled manner, to remodel ECM that has become
aged and glycated. Furthermore, of course, activation presumably would need to
occur without prior wounding, in order to safely remodel critical structures, such
as arterial walls and lung alveoli. Scheid and colleagues have observed that trans-
forming growth factor β3 (TGFβ3) is expressed in regenerating fetal wounds, and
that it promotes epithelial and mesenchymal cell migrations and cell-ECM inter-
actions (Tredget and Ding 2009; Scheid et al. 2002). Subsequently Ferguson and
colleagues demonstrated reduced scar formation during adult human wound heal-
ing treated with TGFβ3 (Ferguson et al. 2009). This suggests that factors might be
found to induce adult FLCs to regenerate and repair age-damaged tissues.

19.5.8 General Therapy Design Considerations

“Rational drug design” (RDD) looks at a target structure (crosslink or adduct)
to figure out what sort of molecule would effectively break it or remove it.
Interactive molecular models in silico (in computers) are very helpful in these stud-
ies. Designers must bring the active sites of the agent and the target molecules close
enough to interact. If the agent is not properly shaped, steric hindrance can prevent
active site contact. Large molecules such as proteins may have particular prob-
lems squeezing among collagen fibrils to reach crosslinks or adducts. Electrostatic
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interactions can also affect apposition of active sites. Furthermore, reactions must
be energetically favored. Local chemistry predicts whether the reaction will move
forward. If the target bonds are not sufficiently energetic to be catalytically bro-
ken, then the agent, or nearby reactants such as oxygen, must provide some of the
energy to move the reaction forward. We would also like some small products to
move away quickly, to decrease the reverse reaction rate. There is some evidence
that crosslinks broken by alagebrium might relink within a few weeks. This would
suggest that alagebrium leaves reactive pieces in place, which can reassemble.

“High throughput screening” (HTS) creates a standardized chemical version of
the target structure inside thousands of tiny reaction vessels. With a standardized
assay, thousands of compounds are tested for any that show effectiveness. When
promising lead compounds are discovered, variations on the structure are tested to
find those with the best performance.

The best leads from RDD and HTS are used as starting points for creating fam-
ilies of similar structures, which are extensively tested in vitro. Compounds that
look promising in vitro are next tested in animals for efficacy, side effects, and tox-
icity, as well as for the pharmacokinetics of absorption, distribution, metabolism,
and excretion (ADME). RDD modeling can also be helpful in predicting whether
problems such as collateral molecular damage might be caused by candidate break-
ers, and in determining whether such damage might be reparable. The structures of
biomolecules can be compared with glucosepane to determine whether they share
any structural motifs that might be damaged by the candidate agent.

Perhaps in the distant future, engineers will compete with biologists to see
if they can repair aging ECM better with tiny, nonliving nanobot machines (see
Chapter 23).

19.5.9 Therapy Usage and Frequency

If the therapeutic agent is a large molecule, such as a protein or enzyme, it might be
injected or implemented through gene therapy because proteins get digested when
taken orally, and they are not well absorbed from the GI tract. Small molecule
agents can often be made in an orally bioavailable form. (See Section 19.5.7 for
a discussion of FLC therapy administration.)

An effective therapy might repair the ECM so well that it need be repeated only at
multiyear intervals. Less effective therapies might leave reactive residues or require
more frequent re-treatments, perhaps even daily. If glycation inhibitors are used
instead of repair therapies, continual use would be required for maximum effect,
and even then glycation could probably not be completely halted. Perhaps some
combination of therapies will prove to be the best treatment.

Large-molecule therapies might stimulate dangerous antigenic responses, espe-
cially if they are administered repeatedly. However, in the future, techniques might
be developed to control antigenic responses to large molecule therapies. That prob-
lem is under intense study by many labs that are developing protein therapies for a
variety of conditions.
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19.6 Summary and Conclusions

Damage to extracellular proteins, including strand breaks, crosslinks, and AGE/ALE
adducts impair the structure and function of the ECM, causing or contributing to
many diseases of aging. Furthermore, with increasing age, the rate of turnover
and repair of the damaged ECM declines, and damage accumulates faster. Good
diet and glycation inhibitors can slow the accumulation of damage. Weight-bearing
exercise stimulates natural turnover and remodeling of ECM in tendons and skele-
tal muscles. Thiazolium compounds can repair a portion of the AGE crosslinks,
and provide clinical improvements of several age-associated pathologies. Perhaps
a series of future drug discoveries will remove the entire menagerie of pathogenic
crosslinks and adducts. Alternatively, a straightforward, complete therapy for extra-
cellular aging might involve stimulating fibroblast lineage cells to more rapidly
replace and regenerate the damaged ECM with newly synthesized ECM, as they
move through it.
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